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A THEORY OF LINEAR NON-CONSERVATrVE SYSTE!%* 

A.A. ZEVIN 

Linear systems with non-conservative positional forces are considered. It 

is proved that Rayleigh's theorem on the behaviour of the natural 

frequencies of conservative systems when the rigidityandinertia are 

varied cannot be generalized to such systems, A necessary and sufficient 

condition is established under which unstable non-conservative systems 

can be stabilized by dissipative forces of a special type. 

It is shown that in the case of forced harmonic oscillations at 

frequencies lying beyond the spectrum of the corresponding conservative 

system, the application of non-conservative forces diminishes the absolute 
value of the action functional. Least upper bounds are obtained for the 

amplitudes of the forced oscillations, independent of the non-conservative 

forces. 

1. The free oscillations of a system with non-conservative positional forces are 
described by the equation 

where x is the vector of generalized coordinates, M and C are the symmetric inertia and 

elasticity matrices and K is the skew-symmetrid matrix of non-conservative forces. 

By Rayleigh's Theorem /l/, the frequencies of the natural oscillations of the correspond- 

ing conservative system (K = 0) increase (do not decrease) as the rigidity increases and 

as the inertia of the system decreases. Zhuravlev has generalized this theorem to systems 

with gyroscopic forces /2/. He has suggested the following problem: is the dIlT.%lOgOUS 

propostion true for system (1.1) when the non-conservative forces are sufficiently small? 
Below we shall answer this question in the negative. 

me may assume without loss of generality that &f = E is the unit matrix. Let hi be 
a simple real eiyenvalue of A, at a corresponding eigenvector and bt an eigenvector of the 
transposed matrix AT corresponding to hf. In general, the vectors at and bc are linearly 
independent; we shall assume henceforth that this is indeed the case. Since (al, W + 0 
(where the parentheses denote the scalar product) /3/, we may assume that (aj,b,)= 1. 

Put C(e) = Co -i- sC1 in (l.l), where C, is a symmetric positive definite matrix. Let 
us investigate the behaviour of hi (e) as e increased. We shall show that, unlike the 
conservative case, Ai (8) is a decreasing function of E when C, is suitably chosen. 

As we know, 

6; = c& (EWE 18+ = ial, C,bt) (W 

Putting ai = CI + df, bf = ~1 - dl and using the symmetry of C,, we obtain 

"PriJ~l.Matem.Mekhan.,52,3,386-391,198E - 
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Let N be an orthogonal matrix whose first row is Cl/II ei II and A the diagonal matrix 

with elements O,i,..., I; S = NTAN. It is obvious that S is non-negative definite; it has 

a simple eigenvalue h = 0 with eigenvector cl; the other eigenvalues are 1. Therefore (ci, 

Sci)= 0; (d,,Sdi)>O because cl and di are linearly independent. 
Put C, = S + yE; clearly, if PC>0 the matrix C, is positive definite. Since 6i < 0 

when PLO, this inequality is also true for sufficiently small p. Thus, with this choice 

of Cr, theeigenvalue hi(&) is a decreasing function of e in a certain interval (0, s*), 
irrespective of the fact that c(e) is an increasing function. 

Similarly one shows that, unlike the conservative case, hi may decrease as the inertia 

matrix M decreases. 

As an illustrative example, consider 

The first eigenvalue of A = C+ K is h, = 1.5; corresponding eigenvectors of Aat AT 

are a1 = (@, f/2/2), bl = (I/%, -fziZ). Therefore e, = (v%, 0), dl = (0, 02). N = E, S = diag (0, 1). Put 

CI = diae (P, 1); then the eigenvalues J.i @) are the roots of the equation 

F(X, e)=h*-(4+e+Pe)a+3+e+6'+3Cts+@=O (1.4) 

From this equation we obtain 6,=3/,p-11/p; hence, in the interval p E (0, 'la) Al(e) decreases for 

small E, although C(e) increases. 

Note that the proposition just proved by no means implies that one can reduce hi to any 

given value by suitably increasing C. As we know /4/, the real parts of the eigenvalues of 

the matrix A satisfy the inequality 

v1< Real < v, (1.5) 

where vi is the least and v, the greatest eigenvalue of C. Since when C is increased so is 

VI, itfollows that the real eigenvalues of A alsoincrease "on the whole", though they may 
decrease in certain intervals. 

Remark. A typical situation in the stability analysis of non-conservative mechanical 

systems (1.1) is the following. The elements of the matrix A depend on some parameter p (in 

aero-elasticity problems p is the wind flow velocity /5/). For P=O the eigenvalues of 

A are real and positive, i.e., system (1.1) is stable. The critical value of p isthevalue 

at which at least one characteristic exponent crosses over into the right half-plane. This 

occurs when positive eigenvalues h, and hi&l meet (oscillatory loss of stability - flutter) 

or when the sign of the least eigenvalue h, changes (non-oscillatory loss of stability - 

divergence). It follows from inequality (1.5) that if the corresponding conservative system 

(K = 0) remains stable as p increases, then divergence is impossible. 

2. We now consider stabilization of an unstable non-conservative system by means of 

dissipative forces. It is well-known /5/ that the application of such forcesmayalso,gener- 

ally speaking, destabilize a stable non-conservative system. We shall therefore confine our 

attention to a special class of dissipative forces, for which 

coefficients is proportional to the inertia matrix (damping of 

to as external /6/). The corresponding equation of motion may 

x" + ex' + Ax = 0 

where the positive parameter e characterizes the magnitude of 

Let hj = a,+ ibl (i = I,..., n) be the eigenvalues of A. 

has b,# 0 or al< 0, then system (2.1) is unstable at e= 

the matrix of the dissipation 

this type is usually referred 

be written as 

(2.1) 

the dissipative forces. 
If one of these eigenvalues 

0. 

Lemma 1. System (2.1) is asymptotically stable if and only if 

e2> bj2/aj, j = 1, . . ., n (2.2) 

Proof. The change of variables x=yexp(--'/,et) reduces Eq.(Z.l) to the form 

y" + (A - V,eaE) y = 0 (2.3) 

Putting y = yj exp (cl + idj) t, we find that the characteristic exponents of system (2.3) 

satisfy the equality (Cj i idi)* = 'Idea -A. Therefore, 

cJ*2 = f ('i, I'/,&* - a, + ((I/$' - njp + bja)'q)". 
I 

(2.4) 

It is clear that system (2.1) is asymptotically stable if E/~>Ic~'~~I for all j. In view 

of (2.4), this condition implies inequality (2.2). 
As follows from (2.2), a non-conservative system is stabilized by dissipative forces of 

the indicated type provided al > 0 for all j. In view of inequality (1.5), we see that if 



the corresponding conservative system is stable, then for any non-conservative forces system 

(2.1) is asymtotically stable from some value of E onwards. 
The quantities bi satisfy the inequality /4/ 

~- 
hi __ k, lri/2n(n - I), k, = max kij (2.5) 

In view of (1.5) and (2.5), we obtain the sufficient condition for the asymptotic stability 

of system (2.1) which does not involve evaluating the eigenvalue of A: 

2 > ‘i,k,2n (n - l)lvl (2.6) 

This condition is most useful when one has only an upper limit for the elements of the 

matrix of non-conservative forces. 

3. We now consider forced harmonic oscillations in a system with non-conservative pos- 

itional forces: 

x" + Cx + Kx = p cos cot, p = (pl, , . ., p,)T (3.1) 

Let us assume that the frequence of the applied force lies outside the frequency range 

of the corresponding conservative system, i.e., 09 p$ IYr, YJ. Then by (1.5), det 1 C + K - 

02E I # 0, and so Eq.(3.1) has a periodic solution x = a cos it, where the vector a is 

determined from the equation 

(C + K - o*E) a = p (3.2) 

Put 

m/o 

J=+ 1 ((x’, x’) - (Cx, x) + (2p cos ot, x)) dt (3.3) 
0 

The quar,tity J is the action integral, evaluated over an interval of length equal to the 

oscillation period. For a periodic solution, we have 

J = ‘l,nwe’ (0’ (a, a) - (Ca, a) + 2 (p, a)) (3.4) 

For fixed C and p the action J is a function of the elements ki, of the matrix K, 

i.e., J = J (K). 

Lemma. I J WI reaches its maximum value at K = 0. 

Proof. By (3.2), (Ca, a) - 09 (a, a) = (P, a), and therefore 

J = ‘i2no-’ (Ra, a), El = C - dE 

Noting that (R-l)T = R-l, (K, a, a) = -(a, Ka), we infer from (3.2) that 

(3.5) 

(R-‘p, p) = (R-l (R T I() a, (R i- A’) a) = 
(a, Ra) + (R-‘Ka, Ka) 

(3.6) 

If 02<y1, then R>O, and therefore J(K)>O, (R-‘Ka, Ka)>O, and by (3.6) we have J< 

‘i2no-’ (W’p, p) = J (0). If wz > v,, then R < 0, J (K) < 0, J >l/,no-l (W1p, p) = J (0). Consequently, in 

either case IJ(K)I < lJ(O)\. 

Thus, application of non-conservative forces reduces the absolute value of the action 

functional. 

If K#O one has J(K) = J(O), provided Ka = 0. In that situation, as one sees 

from (3.21, the amplitudes of the conservative and non-conservative systems are the same. 

The inequality [(a, Ra)l < 1 R-‘p, p 1 ,valid for any matrix K, implies that the amplitudes 

lQI_ of the oscillations of system (3.1) bounded above by quantities independent of the 

magnitudes of the non-conservative forces. It is therefore important to determine the maximum 

of I ai 1 relative to the set of all skew-symmetric 
Let Ri, Ki denote the matrices obtained from 

columns, Vi = Ri + Ki;ri, k;,a, and p* the vectors 
the vectors a,p by deleting the i-th components. 

Lemma 3. The maximum of the i-th oscillation 

matrices K. 

R and K by deleting their i-th rows and 

formed from the i-th columns of Ri,Ki and 

amplitude of system (3.1) is 

‘i* = I Ci 1 + 1/ci2 + dt (3.7) 

ci = 
P, - ~=R;'P, 

d,= 
P.~R;~P* 

2(rii - ri=R;‘ri) ’ 4 (Tli - riTR;‘rl) 

The equality 1 ai I = a;* holds when the elements of K satisfy 

Proof. Let us first assume that the elements of A'i are fixed 

of IQiI as a function of the elements of the vector ki. 

(3.11). 

and determinethemaximum 
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We will first show that the maximum indeed exists. 

The determinant of the matrix R+K may be written as 

A = A, + (ki, c) + (ki, Ski) 

where A0 is the determinant of the matrix R, (kig a) is a linear and (ki, Ski) a quadratic 

form in the coefficients kij. We assert that S is of fixed sign - in fact, of the same 

sign as R(S>O if oe <Ye, S < 0 if c$>Y,). Indeed, if S&O for R>O or sgo for 

R <O, then A=0 for some ki, and so the matrix R+K has an eigenvalue hi= 0. But this 

is impossible, since v1 - o* < Rehi< vi - 08. Assume now that (ki, a)= 0 and (Iii, Skii = 0 for 

some ki = ki’. Putting ki = ski* and expressing the solution of (3.2) as ai= Ai/A, we findthat 

Ai is a linear function of 8 (if necessary, one can apply a small perturbation to the vector 

p to ensure that the coefficient of E not vanish), whereas A is independent of e. Therefore 

Iail-m as a- co, contrary to the boundedness of Iail. Thus S isof fixedsign; consequently, 

IaiI+O as 11 ki 1) -+ CO. Thus the supremum of Iai( is achieved at finite values of ki, 

i.e., the required maximum of Iai( exists. 

We write system (3.2) as 

Q&i + ((ri - ki), a*) = Pi. ai (ri + ki) + via, = P+ (3.8) 

Expressing a, in the second equation of (3.8) by means of the inverse matrix V-1, we 

infer from the first equation that 

ai = 
pi - (r,T - ktT) v,-lp, 

rii- riTVi-lk, + ktTV,-lk,- riTVi-lri + kiTVi-1“ 
(3.9) 

At the maximum of Iai( the derivatives of (3.9) with respect to the components of k, 

must vanish. This yields the following system of equations in ki: 

-(Vi-l + (Vi-‘)T) ki = (Vi-’ + (Vi-l)T) ri - ai-If’-‘p, (3.10) 

The inverse of Vi-l + (V,-l)T is l/pViTR-lVi. Indeed, using the fact that Vi+ ViT= 2Ri, we 

obtain 

ViTRi-lVi (Vi-1 + (Vi-‘)T) = ViTRI-l + ViTRi-1 (2R - ViT) (VI-l)T = 2E 

Hence the solution of system (3.10) is 

k, = - %ViTR,--IV* ((vi-l - (vi+‘) ri - ~z~-IV~-I~~ = 

ll@t-lVfTRt-l~. - ‘/JiTRirl + ‘/aViTR,-l (2R, - V,T)(V,-l)Tr, = 

‘/z a,-vtT R -1 i P* + ri - ViTRt-lrI 

(3.11) 

Substituting this expression into (3.9) and using the fact that 

(R.-l)r = R.-’ 1 , RiT a R,, KiT =-K,, aTBc=cTBTs 

for any 8, B, c, we obtain, after some reduction, 

a, = Pi + %~~-~p.~R~-~p* - r.ITRt-lp.] [‘II+l/,a,-ap,TRI-‘p.- riTR-+,]-I 

Thus the stationary value of ai (ki) is a root of the quadratic equation 

Ui' - 2Ciai - di = 0, (3.12) 

The largest absolute value of a root of Eq.(3.12), ai*, equals the maximum of Iai I as 
a function of the variables kij (j? 1, . . . . n; j # i). But since the coefficients of this equation 

are independent of the elements of Ki, it follows that ai* equals the maximum of 1~1 as a 

function of all the variables kf,, i.e., it is the required maximum of ai (K)* This completes 

the proof of the lemma. 

We note that for the case of a diagonal matrix C the maximum of I ai (K) I was determined 

in /7/ in connection with a different physical problem. 

If p*=o, then ai* = pz (rii - riT~-lri)-l, which is identical with the corresponding value of 

Q when K= 0. In physical terms, this means that if the applied force contains one component, 

then application of non-conservative forces diminishes (does not increase) the corresponding 

oscillation amplitude. 

Remarl:. These results enable us to solve the following problem, which is of independent 

interest in the theory of linear equations Ax=p. Suppose that in the representation A= 

R + K, where R is symmetric and K skew-symmetric, the matrix R is of fixed sign. As is 

clear from the proof of the lemma, the extremal values of 01 (K) are the roots of Eq.(3.12) 

Therefore, the solution of the system satisfies a two-sided estimate that is independent of 

the matrix K: 

a,- d =* d ai+, ,zi- = c, - l/eia+di. ai+ = ci+ I/ ci’f d, 



If ,'* ;L 0 (p* is formed from p by deleting the i-th component), these become greatest 

lower and least upper bounds; they are attained when the elements of K satisfy (3.11), where 
ai = czz- and q = q+ I respectively. If p* = 0 , one of the quantities JL<-, nii, equal to zero, 

is not attained at a finite A (Qi -_ 0 as ji ii j/ -, co). 
We note, moreover, that if p*= ii our result implies that the absolute values of the 

diagonal elements of R"l carnot be less than the corresponding values for the matrix (R :k')-'. 

The author is indebted to V.F. Zhuravlev for suggesting the problem and discussirlg the 

results. 
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STUDY OF TtlE WASILINEAR OSCILLATIONS OF MECHANICAL SYSTEMS WITH 
DISTRIBUTED AND LIMPED PARAMETERS* 

L.D. AKULENKO 

The averaging method is used to study a class of complex oscillatory 

systems which are described by vector integrodifferential equations with 

oscillating kernels. These equations arise when analysing mechanical 

objects which contain elements with distributed and lumped inertial and 

elastic parameters. Two physically distinct cases of the oscillation of 
rigid bodies are considered: "resonant" and "non-resonant", as determined 

by the properties of the mean values of the kernels of the integral terms. 
In the first case, it is shown that the equations of the first approxi- 
mation are equivalent to a system of ordinary second-order differential 

equations, i.e., the order of the system of equations of the motion of a 
rigid body is doubled. In the second case, sufficient conditions are 

found for the oscillating initial variables to be slow in the usual sense 

of the averaging method; the order of the system is then preserved. The 
conditions are stated, under which the averaging method can be shown to 
be strictly applicable in asymptotically long time intervals and con- 

structive error estimates are obtained. On the basis of this approach 

the perturbed horizontal oscillations of a rigid body containing a 
rectangular cavity with a two-layer heavy fluid which is elastically 
connected with a fixed base are investigated and qualitative effects are 
discovered and examined. 

*Prikl.Matem.Mekhan..52,3,392-401,1988 


